- 1. Obtain π_i and π_{ij} , first and second order inclusion probabilities, $1 \le i \ne j \le N$, under *Midzuno-Sen sampling design*.
 - [08]
- 2. Explain Lahiri's method and show that it indeed gives rise to probability proportional to size (PPS) sampling.

$$[4+6=10]$$

3. The purpose of the survey is to estimate $\theta(w_1, w_2) = w_1 \overline{Y}_1 + w_2 \overline{Y}_2$, a linear combination of the stratum means \overline{Y}_1 and \overline{Y}_2 , of two strata into which the population has been divided, w_1, w_2 are given real numbers. Simple random sampling without replacement (SRSWOR) samples of sizes n_1 and n_2 are to be selected from within strata independently. If the cost function is given by $C = c_1 n_1 + c_2 n_2$, find the best values of n_1 and n_2 for estimating θ . In particular consider the cases a) $\theta = \overline{Y}_1 - \overline{Y}_2$, difference between the stratum means and b $\theta = \overline{Y}$, the population mean.

4. Consider cluster sampling set up with N clusters. Let y_{ij} be the y-value of the j^{th} unit in the i^{th} cluster, $1 \leq j \leq M_i$ and $1 \leq i \leq N$, where M_i is the number of units in the i^{th} cluster, $1 \leq i \leq N$. Define $\overline{M} = \frac{1}{N} \sum_{i=1}^{N} M_i$. Let $\overline{Y}_i = \frac{1}{M_i} \sum_{j=1}^{M_i} y_{ij}$ be the mean of the i^{th} cluster, $1 \leq i \leq N$. Suppose we want to estimate the population mean $\overline{Y} = \frac{1}{N\overline{M}} \sum_{i=1}^{N} \sum_{j=1}^{N_i} y_{ij} = \frac{1}{N} \sum_{i=1}^{N} \frac{M_i \overline{Y}_i}{\overline{M}}$. Suggest an estimator for \overline{Y} , based on a sample of n clusters drawn using simple random sampling with replacement (SRSWR). Is your estimator unbiased? Obtain and estimate the mean squared error (MSE) of your estimator.

$$[2+3+3+4=12]$$